Taylor coefficients of the completed Riemann zeta function at 1/2
The list contains the coefficients of the Taylor expansion
$\xi(s) = \sum_{n=0}^\infty \frac{a_n}{n!} (s-1/2)^n$
of the completed Riemann zeta function
$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$
title: Transformation of constant
show-in-parameter-list: no
comment-Riemann-zeta-definition: >
The Riemann zeta function $\zeta(s)$
is the meromorphic continuation of the Dirichlet series
$\sum_{n=0}^\infty n^{-s}, \Re(s) > 1$.
comment-odd-coefficients: >
$a_n = 0$ for every odd $n$ due to CITE{formula-functional-equation}.
formula-functional-equation: >
$\xi(s) = \xi(1-s)$ (functional equation).
xi(s) = 1/2 * s*(s-1)*pi^(-s/2)*gamma(s/2)*zeta(s)
numbers = {n: xi.derivative(s,n)(s=1/2) for n in [0..10]}
J. B. Keiper, "Power series expansions of Riemann's $\xi$ function",
Math. Comp. 58 (1992), 765-773.
doi: 10.1090/S0025-5718-1992-1122072-5
title: "Wikipedia: Riemann zeta function"
url: https://en.wikipedia.org/wiki/Riemann_zeta_function
title: "Wikipedia: Riemann Xi function"
url: https://en.wikipedia.org/wiki/Riemann_Xi_function
$n$<sup>th</sup> coefficient
Numbers: INPUT{numbers.yaml}