Ramanujan's constant $R = e^{\pi \sqrt{163}}$
edit on github · preview edits · show history · long url · irrational exponential function
Number
$e^{\pi \sqrt{163}}$
262537412640768743.9999999999992500725971981856888793538563373369908627075374103782106479101186073129511813461860645041930838879497538640449057287144771968148523224320391164782914886422827201311783170650104522268780144484177034696946335570768172388768100092370653951938650636275765788855822394811427691210083088665110728471062346581129818301245913283610006498266592365172617883086371078645219552815427466510961100147250209790463938177871257500980365779223064312165113108738059929824233558494561239956769997843596486409600326648244352130649159930327053075325656861838826548330980284669624287388475184443683853073411504446947884005946446913168212059294605454216375489189006015035687286293314006363226814635161216376486413142934235160021418051352828773196017981391788440715066299491909349627739620723413530255757818028118021020634097499392383729033036173981663360032261262088666411718053832855897000273572264523328701064958636772669868738485916569826626174198855115684430332735123103243307572733164953615
Definition
The irrational constant $R = e^{\pi \sqrt{163}}$, which is very close to an integer. The name "Ramanujan's constant" derives from an April Fool's joke played by Martin Gardner, where he claimed that this number is an integer and Ramanujan conjectured that in 1914.
Links
Data properties
Numbers are of type: real number