$j$-invariants of elliptic curves over $\mathbb{Q}$ with good reduction outside $\{2, 3, 5\}$
edit on github · preview edits · show history · long url · elliptic curves number theory
Numbers
$j$
0
-6
-9/5
-1/15
-24/5
-25/2
-18/25
-36
-64/25
64/9
64/3
-72
-72/5
81/2
-108/5
108
-128/9
128
135/8
160
-192
192
-216
270
288
-300
-320
405
-432
432
-450
-486/5
-576
-576/5
576
648
-768/5
768
-864
864/25
864/5
864
960
-972
-243/1000
1080
-1152
1152
1296
1440
1458
1536
1600
1620
-1728
-1728/5
1728/25
1728/5
1728
-1800
1800
1875
1920
-1944/5
1944
2048/3
2048
-2160
2160
-2187/25
2304
-2560/3
-2592
2592
2700
-2880
2880
-3072
3375/2
-3456
-3456/25
3456/5
3456
3645/4
3888
4000/9
4320
4374
4608
4800
-5000
5120/3
-5184
-5184/5
-5184/125
5184/5
5184
5488/81
-6075
6561/32
-6912
-6912/5
6912/125
6912/5
6912
-7680
7776/3125
7776/5
-8000/81
8000
-8640
8640
8748/5
9216/5
9261/8
10125/64
10368/5
10368
10976
11250
-12288/25
12800/27
-13824
13824/5
-15552
15552/25
15552/5
15552
16000/3
16384/5
17280
-17496/5
-18522
-19440
-19683/10
20480/243
21296/25
21296/15
-21600
21952/75
21952/9
23328
-24389/12
-25920
27436/27
27648/25
27648
27783/16
-30720
-32928
35152/9
-35937/4
36864/5
-40960/27
-41472
-41472/25
41472/25
42592/9
43200
43904/45
43904/3
46305/2
-46656/5
46656/125
46656/25
54000
55296/5
59319/40
69984/125
-72000
73728
78608
-82944
85184/5625
85184/405
85184/3
86400
93312/5
97336/81
-102400/3
107811/8
109503/64
-121945/32
131072/9
-132651/2
-138240
-138915/4096
139968
140608/81
140608/3
-140625/8
-148176/5
148176/25
157464/25
-165888/25
165888/625
177147/5
177957/250
191664/125
195112/9
197568/125
-207360
207646/6561
-209952
-219488/729
219488/75
-219501/2048
221184/125
237276/625
-248832/25
281216/225
287496
296595/64
308655/512
314432/75
314432/45
-316368
357911/2160
-373248/625
389344/3
419904
421824/78125
-314432/421875
438976/225
438976/5
444528/125
-446631/128
470596/225
-474552
-497664
555579/2
-592704/625
-592704/3125
592704/5
-622080
-628864/3645
778688/45
790272
804357/500
839808/125
884736/5
898425/512
953312/405
995328/625
1000188
1022208/3125
-1058841/250
1073733/1000
1097505/8
1149984/625
-1166400
-1167051/512
1193859/512
1200000
-1339893/4
1463340
1556068/81
-1557376/625
1601613/163840
-1642545/8
-1658880
1778112/5
-1860867/320
1898208/5
1906624/225
-1975392/5
-1975392/625
2060602/729
-2146689/2000
-2194880
2359296/125
-2654208/15625
2744000/9
-2859936/125
2863288/1875
3241792/9
3316275/16
-3472875/4
3631696/2025
-3721734/3125
3721734/25
-3779136/125
4102893/2560
-4147200
-4244832/3125
-5267712/125
-5624320/177147
-5659776/125
-5971968/25
-6440067/40
6483584/1265625
6644672/3645
-6699465/2
6838155/4
-6847995/64
7301384/3
43904/7381125
-8120601/12800
8429568/15625
-8780800/2187
-9199872/5
-12288000
2863288/13286025
13997521/225
14172488/1875
14526784/15
15166431/20480
15768432/5
16541040
16747803/500
16979328/25
-17173512/25
19056256/27
-19465109/248832
-20720464/15625
-21024576
22639104/3125
-24361803/1000
24897088/18225
24918016/45
-27995042/1171875
28588707/320
28756228/3
-29218112/6561
-34167744/3125
-36006768/625
36594368/16875
38614472/405
-42144192/390625
-44789760
46314747/3125
46969655/32768
48228544/2025
54607676/32805
57960603/31250
61740000
62099136/25
62710839/125000
68450475/4096
92345408/675
94531131/8
96018048/3125
111284641/50625
111980168/32805
131872229/18
132304644/5
136835858/1875
164566592/46875
-171307467/10
-186297408/390625
214495200
-225866529/62500000
252179168/25
-273359449/1536000
300605792/675
346478976/1953125
-349938025/8
362225664/5
379297728/78125
409493637/250000
-425920000/243
488095744/125
506024032/59049
546718898/405
702595369/72900
-745936704/5
-784446336
868327204/5625
-873722816/59049
890277128/15
-994121664/5
-1159088625/2097152
-1184303835/16
1541767203/512000
-1568892672/78125
2156689088/81
-2218426947/102400
2299120425/8
2472985728
-2604751992
3065617154/9
3229310592/125
4045602816/1953125
4543847424/3125
4733169839/3515625
6772724288/91125
-7283146752/25
8144865728/1125
-8302761792/25
8527173507/200
14784166784/243
-15590912409/78125
15786448344
-16522921323/4000
20034997696/455625
-23203748160
23937672968/45
24836849888/820125
26410345352/10546875
-30866268160/3
35578826569/5314410
-55011266559/8192
56667352321/15
58591911104/243
80273184813/262144000
-87739741323/250000000
-112584240576/78125
-147281603041/215233605
183711891456/125
-189613868625/128
192596360288/3796875
241750216332/48828125
272223782641/164025
290236765383/256
-325228538880
502270291349/1889568
819699324507/80
1241603628992/597871125
1261112198464/675
-1557792607653/67108864
1770025017602/75
-1897537562112/390625
2656166199049/33750
-2814932662848/3125
-3809037964608/15625
-3839138053504/87890625
4102915888729/9000000
-4388755356576/48828125
10316097499609/5859375000
33940032554547/5368709120
-39091613782464
44708635815488/34171875
-99468145455264/125
-115330920751809/4096000
499460194376672/253125
1114544804970241/405
3659668390116864/78125
13857745529076264/19073486328125
16778985534208729/81000
21782774971421163/128000
-29372519473126518336/1953125
-71697661607585576448/25
Definition
This table contains the $j$-invariants of all elliptic curves $\mathbb{Q}$ with good reduction outside $\{2,3,5\}$.
Comments
(1)
An elliptic curve $E/\mathbb{Q}$ has good reduction at a prime $p$ if and only if $p$ does not divide the minimal discriminant of $E$, and equivalently, if and only if $p$ does not divide the conductor of $E$.
Links
Data properties
Numbers are of type: rational number
Table is complete: yes
Sources of data: [1]