Preview for editing tables

In this editor you can enter or edit tables in YAML format, and you can get a preview of how numberdb would render it. You cannot save changes here. Once everything looks good, upload it to the git repository numberdb-data.
— preview —
Keiper-Li coefficients
edit on github
Numbers
$n$ 
$\lambda_n$
INPUT{numbers.yaml} (not shown in preview)
Definition
The Keiper-Li coefficients $\lambda_n$, $n\geq 0$, are defined as $\lambda_n = \sum_\rho \big(1-(1-\frac{1}{\rho})^n\big)$, where the sum is interpreted as $\lim_{T\to\infty} \sum_{\rho:|\rho|\leq T}$ over the set of non-trivial zeros $\rho$ of the Riemann zeta function.
Parameters
$n$
—   integer ($n \geq 0$)
Formulas
(1)
$\lambda_n = \lambda_{-n}$, if we extend the same definition to negative indices.
(2)
$\lambda_n = \frac{1}{(n-1)!} \frac{d^n}{ds^n}\big(s^{n-1}\log\xi(s)\big)|_{s=1}$ for $n\geq 1$ and $\lambda_0 = 0$, where $\xi(s)$ is the Riemann $\xi$ function $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$
(3)
$\log(2\xi(1/z)) = \sum_{n=1}^\infty \frac{\lambda_{n}}{n} (1-z)^n$, which is how Keiper originally defined the constants $\lambda^{\text{Keiper}}_n = \lambda_n/n$.
(4)
$\frac{d}{dz}\log\xi(\frac{1}{1-z}) = \sum_{n=0}^\infty \lambda_{n+1}z^n$.
(5)
$\lambda_1 = 1 + \gamma/2 - \log 2 - \frac{1}{2}\log \pi$, where $\gamma$ is the Euler-Mascheroni constant.
(6)
$\lambda_2 = 1 +\gamma - \gamma^2 + \pi^2/8 $ $- 2\log 2 - \log\pi - 2\gamma_1$, where $\gamma_1$ is the first Stieltjes constant.
(7)
$\lambda_3 = \frac{1}{2}\big( 2 + \frac{3}{4}\pi^2 - 6\log 2 - 3\log\pi - 12\gamma_1 + \gamma(3 + 2(\gamma - 3)\gamma + 6\gamma_1) + 3\gamma_2 - \frac{7}{4}\zeta(3) \big)$.
(8)
$\lambda_{n+1} = \lambda_n + \frac{1}{n!} \frac{d^n}{ds^n} \big( s^n \frac{\xi'(s)}{\xi(s)} \big) \big|_{s=1}$ for $n\geq 0$.
Comments
(9)
Keiper [5] originally defined $\lambda_n$ with a different normalization: $\lambda^{\text{Keiper}}_n = \frac{1}{n}\lambda_n$.
(10)
The Riemann hypothesis is equivalent to $\lambda_n\geq 0$ for all $n$. This is Li's criterion.
References
[1]
Juan Arias de Reyna, "Asymptotics of Keiper-Li coefficients", Functiones et Approximatio Commentarii Mathematici. 45(1) (2011), 7-21. (doi)
[2]
M.W. Coffey, "Relations and positivity results for the derivatives of the Riemann ξ function", J. Comput. Appl. Math. 166 (2004), 525-534.
[3]
Donal F. Connon, "A recurrence relation for the Li/Keiper constants in terms of the Stieltjes constants", (2009), 50 pages.
[4]
Fredrik Johansson, "Rigorous high-precision computation of the Hurwitz zeta function and its derivatives", Numerical Algorithms. 69(2) (2015), 253-270. (arXiv) (doi)
[5]
J. B. Keiper, "Power series expansions of Riemann's $\xi$ function", Math. Comp. 58 (1992), 765-773. (doi)
[6]
Jeffrey C. Lagarias, "Li coefficients for automorphic L-functions", Ann. Inst. Fourier, Grenoble, Tome 57, no 5 (2007), 1689-1740. http://aif.cedram.org/item?id=AIF_2007__57_5_1689_0
[7]
Xian-Jin Li, "The Positivity of a Sequence of Numbers and the Riemann Hypothesis", Journal of Number Theory 65 (1997), 325-333.
Links
Data properties
Entries are of type: real number
Table is complete: no