Preview for editing tables

In this editor you can enter or edit tables in YAML format, and you can get a preview of how numberdb would render it. You cannot save changes here. Once everything looks good, upload it to the git repository numberdb-data.
— preview —
Hafner-Sarnak-McCurley constant
edit on github
The Hafner-Sarnak-McCurley constant $\omega$ is the limit of the probabilities $D(n)$ as $n \to \infty$ that the determinants of two random $n\times n$ matrices with integral coefficients have coprime determinants.
$\omega = \prod_p \big(1- \big(1 - \prod_{j=1}^\infty (1-p^{-j})\big)^2 \big)$, where the outer product ranges over all primes $p$.
$D(n) = \prod_p \big( 1 - \big( 1 - \prod_{j=1}^n (1 - p^{-j}) \big)^2 \big)$.
Flajolet, P. and Vardi, I., "Zeta Function Expansions of Classical Constants", Unpublished manuscript (1996).
L. Hafner, P. Sarnak and K. McCurley, "Relatively prime values of polynomials", In A Tribute to Emil Grosswald: Number Theory and Related Analysis, Contemporary Mathematics (1993), M. Knopp and M. Sheigorn, Editors, vol. 143.
Data properties
Entries are of type: real number