# Preview for editing tables

In this editor you can enter or edit tables in YAML format, and you can get a preview of how numberdb would render it. You cannot save changes here. Once everything looks good, upload it to the git repository numberdb-data.
— preview —
Diagonal Ramsey numbers
edit on github
Numbers
$n$
$R(n,n)$
1:
[1, 1]
2:
[2, 2]
3:
[6, 6]
4:
[18, 18]
5:
[43, 48]
6:
[102, 165]
7:
[205, 540]
8:
[282, 1870]
9:
[565, 6588]
10:
[798, 23556]
Definition
The $n$'th diagonal Ramsey number is the least positive integer $R(n,n)$ such that any blue-red edge coloring of the complete graph on $R(n,n)$ vertices has a monochromatic $n$-clique.
Parameters
$n$
—   integer ($n \geq 0$)
(1)
Ramsey's theorem states that $R(n,n)$ exists.
(2)
$R(n,n) \leq \binom{2n-2}{n-1}$ .
(3)
$R(n,n) \leq (1+o(n)) 4^{n-1}/\sqrt{\pi n}$ .
(4)
$R(n,n) \leq (1+o(n)) 4^{n} n^{-O(1)\log (n)/\log\log n}$ .
(5)
$R(n,n) \geq (1+o(n)) 2^{n/2} n / (\sqrt{2}e)$ .
(6)
$R(n,n) \geq (1+o(n)) 2^{n/2} \sqrt{2} n / (e)$ .
References

David Conlon, "A new upper bound for diagonal Ramsey numbers", Annals of Mathematics, 170 (2), 941–960, (2009). (arXiv) (doi)

Paul Erdős, "Some remarks on the theory of graphs", Bull. Amer. Math. Soc., 53 (4), 292–294, (1947). (doi)

Paul Erdős and George Szekeres, "A combinatorial problem in geometry", Compositio Mathematica 2, 463-470, (1935). (doi)

Stanisław Radziszowski, "Small Ramsey Numbers", Dynamic Surveys, Electronic Journal of Combinatorics, (2011). (doi)

Joel Spencer, "Ramsey's theorem - a new lower bound", J. Combin. Theory Ser. A, 18, 108–115, (1975). (doi)